Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Biomed Rep ; 20(6): 88, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38665420

RESUMO

As one member of the heterogeneous ribonucleoprotein (hnRNP) family, scaffold attachment factor A (SAF-A) or hnRNP U, is an abundant nuclear protein. With RNA and DNA binding activities, SAF-A has multiple functions. The present review focused on the biological structure and different roles of SAF-A and SAF-A-related diseases. It was found that SAF-A maintains the higher-order chromatin organization via RNA and DNA, and regulates transcription at the initiation and elongation stages. In addition to regulating pre-mRNA splicing, mRNA transportation and stabilization, SAF-A participates in double-strand breaks and mitosis repair. Therefore, the aberrant expression and mutation of SAF-A results in tumors and impaired neurodevelopment. Moreover, SAF-A may play a role in the anti-virus system. In conclusion, due to its essential biological functions, SAF-A may be a valuable clinical prediction factor or therapeutic target. Since the role of SAF-A in tumors and viral infections may be controversial, more animal experiments and clinical assays are needed.

2.
Front Immunol ; 15: 1320689, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38318177

RESUMO

During lymphocyte development, a diverse repertoire of lymphocyte antigen receptors is produced to battle against pathogens, which is the basis of adaptive immunity. The diversity of the lymphocyte antigen receptors arises primarily from recombination-activated gene (RAG) protein-mediated V(D)J rearrangement in early lymphocytes. Furthermore, transcription factors (TFs), such as early B cell factor 1 (EBF1), paired box gene 5 (PAX5), and proto-oncogene myelocytomatosis oncogene (MYC), play critical roles in regulating recombination and maintaining normal B cell development. Therefore, the aberrant expression of these TFs may lead to hematologic neoplasms.


Assuntos
Neoplasias Hematológicas , Neoplasias , Fator de Transcrição PAX5 , Proteínas Proto-Oncogênicas c-myc , Transativadores , Humanos , Linfócitos B , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/metabolismo , Neoplasias/metabolismo , Fator de Transcrição PAX5/genética , Fator de Transcrição PAX5/metabolismo , Receptores de Antígenos/metabolismo , Transativadores/genética , Transativadores/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo
3.
Adv Mater ; 35(47): e2301752, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37815114

RESUMO

Upscaling efficient and stable perovskite films is a challenging task in the industrialization of perovskite solar cells partly due to the lack of high-performance hole transport materials (HTMs), which can simultaneously promote hole transport and regulate the quality of perovskite films especially in inverted solar cells. Here, a novel HTM based on N-C = O resonance structure is designed for facilitating the modulation of the crystallization and bottom-surface defects of perovskite films. Benefiting from the resonance interconversion (N-C = O and N+ = C-O- ) in donor-resonance-donor (D-r-D) architecture and interactions with uncoordinated Pb2+ in perovskite, the resulting D-r-D HTM with two donor units exhibits not only excellent hole extraction and transport capacities, but also efficient crystallization modulation of perovskite for high-quality photovoltaic films in large area. The D-r-D HTM-based large-area (1.02 cm2 ) devices exhibit high power conversion efficiencies (PCEs) up to 21.0%. Moreover, the large-area devices have excellent photo-thermal stability, showing only a 2.6% reduction in PCE under continuous AM 1.5G light illumination at elevated temperature (≈65 °C) for over 1320 h without encapsulation.

4.
Small ; 19(25): e2207226, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36929122

RESUMO

The improving intrinsic stability, determining the life span of devices, is a challenging task in the industrialization of inverted perovskite solar cells. The most important prerequisite for boosting intrinsic stability is high-quality perovskite films deposition. Here, a molecule, N-(2-pyridyl)pivalamide (NPP) is utilized, as a multifunctional resonance bridge between poly(triarylamine) (PTAA) and perovskite film to regulate the perovskite film quality and promote hole extraction for enhancing the device intrinsic stability. The pyridine groups in NPP couple with the phenyl groups in PTAA through π-π stacking to improve hole extraction capacities and minimize interfacial charge recombination, and the resonance linkages (NCO) in NPP dynamically modulate the perovskite buried defects through strong PbO bonds based on the fast self-adaptive tautomerization between resonance forms (NCO and N+ CO- ). Because of the combined effect of the reduction defect density and improved energy level in the perovskite buried interfaces as well as the optimized crystal orientation in perovskite film enabled by the NPP substrate, the devices based on NPP-grown perovskite films show an efficiency approaching 20% with negligible hysteresis. More impressively, the unencapsulated device displays start-of-the-art intrinsic photostability, operating under continuous 1-sun illumination for 2373 h at 65 °C without loss of PCE.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...